Capital humano e ingresos laborales en el Perú, año 2023: Una aproximación de las principales brechas salariales
Main Article Content
Abstract
This study addresses the causal relationship between human capital and labor income in Peru in the year 2023, adopting a complementary approach, which identifies and estimates the main gaps, we use an instrumental variable to mitigate possible endogeneity problems. The main objective is to identify how human capital affects labor income. A multiple regression model has been used, using information from the National Institute of Statistics and Informatics (INEI) and the National Household Survey (ENAHO). The completion of the educational level, coded as a dummy variable, was used as an instrumental variable, which facilitated a more precise estimation of the causal impacts of human capital on labor income. The study revealed that significant wage gaps persist. The gender gap is 21.9% in 2023, with women working in lower productivity sectors. There is a wage gap of 11.3% between urban and rural areas, with higher wages in urban areas. Independent workers earn 29.3% less than dependent workers, due to precarious work conditions. Formal workers earn 25% more than informal workers. Additionally, high job skills increase hourly wages by 22.4%, highlighting the need to invest in vocational education and training.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Aali-Bujari, A., Venegas-Martínez, F., & García-Santillán, A. (2019). Schooling levels and wage gains in Mexico. Economics & Sociology, 12(4), 74–83. https://doi.org/10.14254/2071-789X.2019/12-4/4
Agrawal, T., & Agrawal, A. (2019). Who Gains More from Education? A Comparative Analysis of Business, Farm and Wage Workers in India. The Journal of Development Studies, 55(6), 1081–1098. https://doi.org/10.1080/00220388.2018.1443209
Atal, J., Nopo, H., & Winder, N. (2009). New Century, Old Disparities: Gender and Ethnic Wage Gaps in Latin America. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1815933
Becker, G. (1964). Human Capita A Theoretical and Empirical Analysis, with Special Reference to Education (3rd ed.). The University of Chicago Press.
Blau, F. D., & Kahn, L. M. (2017). The Gender Wage Gap: Extent, Trends, and Explanations. Journal of Economic Literature, 55(3), 789–865. https://doi.org/10.1257/jel.20160995
Card, D. (1999). The Causal Effect of Education on Earnings (pp. 1801–1863). https://doi.org/10.1016/S1573-4463(99)03011-4
Carrasco Choque, F., & Castillo Araujo, R. F. (2021). Human capital and job opportunities according to educational level in Perú. Universidad Ciencia y Tecnología, 25(110), 48–57. https://doi.org/10.47460/uct.v25i110.475
Ceballos, O. (2019). Principios básicos de microeconometría y del uso de variables instrumentales para la inferencia causal. Análisis Económico, XXXIV(86), 219–243.
Chamorro-Rodriguez, G., Garcia-Sinchituyo, J., Torres-Quiroz, A., Narciso-Gomez, K., Villalobos-Meneses, B., Gomero-Ostos, N., & Ramirez-Veliz, J. (2023). Impact of the Pandemic on the economic returns of education in Peru. https://doi.org/10.18687/LACCEI2023.1.1.1030
COMEX (2023). Desempeño laboral peruano: resultados 2023.
Duraisamy, P. (2002). Changes in returns to education in India, 1983–94: by gender, age-cohort and location. Economics of Education Review, 21(6), 609–622. https://doi.org/10.1016/S0272-7757(01)00047-4
Escribà-Agüir, V., & Fons-Martinez, J. (2014). Crisis económica y condiciones de empleo: diferencias de género y respuesta de las políticas sociales de empleo. Informe SESPAS 2014. Gaceta Sanitaria, 28, 37–43. https://doi.org/10.1016/j.gaceta.2014.01.013
Groisman, F. (2014). Empleo, salarios y desigualdad en Argentina: análisis de los determinantes distributivos. Problemas Del Desarrollo, 45(177), 59–86. https://doi.org/10.1016/S0301-7036(14)70863-6
Heckman, J. J., Lochner, L. J., & Todd, P. E. (2006). Chapter 7 Earnings Functions, Rates of Return and Treatment Effects: The Mincer Equation and Beyond (pp. 307–458). https://doi.org/10.1016/S1574-0692(06)01007-5
Leoni, S. (2023). A Historical Review of the Role of Education: From Human Capital to Human Capabilities. Review of Political Economy, 1–18. https://doi.org/10.1080/09538259.2023.2245233
Maldonado Méndez, L. R., Maldonado Álava, P. L., Maldonado Méndez, G. J., & Méndez Maldonado, M. G. (2023). Evolución del ingreso nominal y la brecha salarial urbano-rural en Ecuador. RECIMUNDO, 7(3), 217–227. https://doi.org/10.26820/recimundo/7.(3).sep.2023.217-227
Mamani-Choque, E. E., Larico-Flores, J. B., Mendoza-Choque, Z. J., & Calatayud-Mendoza, A. P. (2020). Returns of education in the labor market of dependent and independent workers by educational level and place of residence in Peru, 2010-2018. Revista Científica de La UCSA, 7(1), 12–22. https://doi.org/10.18004/ucsa/2409-8752/2020.007.01.012-022
Mincer, J., & Polachek, S. (1978). An Exchange: The Theory of Human Capital and the Earnings of Women: Women’s Earnings Reexamined. The Journal of Human Resources, 13(1), 118. https://doi.org/10.2307/145305
Otero-Cortés, A., & Acosta-Ariza, E. (2022). Desigualdades en el mercado laboral urbano-rural en Colombia, 2010-2019. Revista CS, Especial, 173–219. https://doi.org/10.18046/recs.iEspecial.4939
Peng, J., Li, J., Ma, L., & Lv, Z. (2023). The Contribution of Work Experience on Earnings Inequality of Migrant Workers: Decompositions Based on the Quantile Regression Equation. Research on World Agricultural Economy, 4(1), 73–82. https://doi.org/10.36956/rwae.v4i1.819
Salas Díaz, R. J. (2015). La incidencia de la migración sobre las diferencias salariales de género en Colombia. Ensayos Sobre Política Económica, 33(77), 103–116. https://doi.org/10.1016/j.espe.2014.11.002