Biodiseño de Materiales de Construcción Sostenibles

Autores/as

DOI:

https://doi.org/10.32911/as.2024.v17.n2.1183

Palabras clave:

Biodiseño, Sustentabilidad, Construcción, Materiales

Resumen

Las incidencias negativas que generan las construcciones en el entorno natural han obligado a que el sector constructivo adopte nuevas prácticas sustentables para hacer frente dicha problemática. De ahí surge la necesidad de buscar alternativas de biodiseño de materiales claves para cambiar las prácticas convencionales por unas más sustentables. Bajo ese sentido, la relevancia de este estudio recae en el objetivo primordial de analizar los casos de biodiseños de materiales para la construcción como estrategia de sustentabilidad; para lo cual, se abordó un estudio cualitativo y de alcance exploratorio, en el que se examinó una serie de casos de biodiseños por medio de un análisis documental en el contexto internacional y nacional. Los resultados evidenciaron una serie de biodiseños provenientes de fuentes renovables que resultan ser viables y muy efectivos para la construcción, pues ofrecen no solo propiedades físicas y mecánicas adecuadas, sino medios cruciales para hacer frente a la contaminación de la industria de ladrillos, mitigar los daños hacia el ambiente, minimizar la generación de residuos y promover el reciclaje de plásticos. En conclusión, el análisis de biodiseños para construcción reveló hallazgos importantes a nivel internacional y nacional. A nivel global, se encontraron opciones prometedoras con un enfoque amplio en temas específicos. A nivel nacional, aunque hay escasez de investigaciones, se identificaron avances significativos. Se recomienda enfocarse en desarrollar nuevos materiales sostenibles y realizar estudios a largo plazo para evaluar su impacto ambiental.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Diego Jesus Aranda, Universidad Nacional Federico Villarreal, Lima, Perú.

 

 

Citas

Adamatzky, A., Wösten, H. A. B., & Dessi-Olive, J. (2022). Strategies for Growing Large-Scale Mycelium Structures. Biomimetics, 7(3), 129. 10.3390/BIOMIMETICS7030129

Alquezar Facca, C., Carvalho, A. R., Tavares de Moraes, V., & Rocha, C. (2023). Biodiseño y Bioaprendizaje: Diálogo con sistemas naturales y complejos. Cuadernos del Centro de Estudios de Diseño y Comunicación, (178). https://doi.org/10.18682/cdc.vi178.8643

Alvarez Quispe, C. D., & Orado Paredes, A. Y. (2023). Influencia de la Sustitución Porcentual del Cemento por Ceniza de Cáscara de Arroz en Propiedades Físico–Mecánicas del Concreto -2023. Ciencia Latina Revista Científica Multidisciplinar, 7(4), 6246-6261. https://doi.org/10.37811/cl_rcm.v7i4.7409

Beatty, D. N., Williams, S. L., & W. Srubar, W. (2022). Biomineralized Materials for Sustainable and Durable Construction. Annual Review of Materials Research, 52, 411-439. https://doi.org/10.1146/annurev-matsci-081720-105303

Booth, P., & Jankovic, L. (2022). Novel biodesign enhancements to at-risk traditional building materials. Front Built Environ, 8, 1–12. 10.3389/fbuil.2022.766652

Carmona, F. (2024). Innovación en Arquitectura: ideas, tendencias y casos de éxito. Fuen Carmona. https://fuencarmona.com/innovacion-en-arquitectura-ideas-tendencias/

Carter, M., Tuttle, M., Mancini, J., Martineau, R., Hung, C., & Gupta, M. (2023). Microbially Induced Calcium Carbonate Precipitation by Sporosarcina pasteurii: a Case Study in Optimizing Biological CaCO3 Precipitation. Applied and Industrial Microbiology, 89(8), 1–17. https://doi.org/10.1128/aem.01794-22

Chen, L., Zhang, Y., Chen, Z. et al. Biomaterials technology and policies in the building sec-tor: a review. Environ Chem Lett, 22, 715–750 (2024). https://doi.org/10.1007/s10311-023-01689-w

Esat, R., & S. Ahmed-Kristensen, S. (2018). Classification of Bio-Design Applications: To-wards a Design Methodology. DS 92 Proceedings of the DESIGN 2018 - 15th Interna-tional Design Conference. https://doi.org/10.21278/idc.2018.0531

Fahim, G., Rahman, A., Amer, H., & Alyousef, R. (2021). Development of a sustainable concrete incorporated with effective microorganism and fly Ash: Characteristics and modeling studies. Construction and Building Materials, 285, 1-18.

1016/j.conbuildmat.2021.122899.

Fouad, D., Farag, M. (2019). Design for Sustainability with Biodegradable Composites. En E. Yasa, M. Mhadhbi, & E. Santecchia (Ed.), Design and Manufacturing. 10.5772/INTECHOPEN.88425

Franco, J., & Cusme, C. (2022). La gestión integral de proyectos de construcción, basada en la sostenibilidad y la innovación. South Florida Journal of Development, 3(4), 5647-5663. 10.46932/sfjdv3n4-125

García, D. E. (2021). Arquitectura y urbanismo sustentable.

https://books.google.com.pe/books/about/Arquitectura_y_urbanismo_sustentable.html?id=ieRBEAAAQBAJ&redir_esc=y

Goidea, A., Floudas, D., & Andréen, D. (2022). Transcalar Design: An Approach to Bi-odesign in the Built Environment. Infrastructures, 7(4), 50. https://doi.org/10.3390/infrastructures7040050

Hernández-Sampieri, R., & Mendoza Torres, C. P. (2018). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. McGrawHill Education.

Hernández-Zamora, M. F., Jiménez-Martínez, S., & Sánchez-Monge, J. (2021). Materiales alternativos como oportunidad de reducción de impactos ambientales en el sector construcción. Tecnología en Marcha, 34(2), 3–10. https://doi.org/10.18845/tm.v34i2.4831

Hu, Y., Liu, W., Zhang, Q., Hu, X., & Hu, X. (2022). Investigation of Cement Prepared with Microencapsulated Microorganisms. ACS Omega, 7(3), 2947−2959 10.1021/acsomega.1c05971

Kamionka, L.W. (2022). Sustainable design in terms of use of environmentally friendly ma-terials. Środowisko Mieszkaniowe/Housing Environment, 41(1), 65-77. https://doi.org/10.4467/25438700sm.22.031.17154

Lal, S. (2022). Green Building Design Concept: A Sustainable Approach. Journal of Mechanical and Construction Engineering (JMCE), 2(1), 1–10. 10.54060/JMCE/002.01.003

Lee, C., Lee, H., & Bin Kim, O. (2018). Biocement Fabrication and Design Application for a Sustainable Urban Area. Sustainability, 10, 1–17. 10.3390/su10114079

Lujan, M. (27 de setiembre de 2024). Innovaciones en la construcción para reinventar el sector. Innovar o Morir.https://innovaromorir.com/innovaciones-en-la-construccion-reinventa-sector/

Maraveas, C. (2020). Production of Sustainable Construction Materials Using Agro-Wastes. Materials, 13(2), 262. 10.3390/MA13020262

Narendhran, P.S., Parthasarathy, S., Vignesh, S., Mouliyarasu, A., Prashanth, S., Jayaraman, A., & Vasudevan, M. (2022). Envisaging Sustainable Building Materials for Earthen Construction Practices. IOP Conference Series: Earth and Environmental Science, 1130, 012015. 10.1088/1755-1315/1130/1/012015

Niyasom, S., & Tangboriboon, N. (2021). Development of biomaterial fillers using eggshells, water hyacinth fibers, and banana fibers for green concrete construction. Construction and Building Materials, 283, 1–13. 10.1016/j.conbuildmat.2021.122627

Ñaupas, H., Valdivia, M. R., Palacios, J. J., Romero, H. E. (2018). Metodología de la investigación Cuantitativa-Cualitativa y Redacción de la Tesis (5ª. edición). Ediciones de la U.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Manoj M. Lalu, Tianjing Li, Elizabeth W. Loder, Evan Mayo-Wilson, Steve McDonald … Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016

Pearlmutter, D., Theochari, D., Nehls, T., Pinho, P., Piro, P. Korolova, A., Papaefthimiou, S., Garcia Mateo, M. C., Calheiros, C., Zluwa, I., Pitha, U., Schosseler, P. Florentin, Y., Ouannou, S., Gal, E., Aicher, A., Arnold, K., Igondová, E., Pucher, B. (2020). Enhancing the circular economy with nature-based solutions in the built urban environment: green building materials, systems and sites. Blue-Green Systems, 2(1), 46–72. https://doi.org/10.2166/bgs.2019.928

Răut, I., Călin, M., Vuluga, Z., Oancea, F., Paceagiu, J., Radu, N., Doni, M., Alexandrescu, E., Purcar, V., Gurban, A.-M., Petre, I., & Jecu, L. (2021). Fungal Based Biopolymer Composites for Construction Materials. Materials, 14(11), 2906.

https://doi.org/10.3390/ma14112906

Reinhardt, O., Ihmann, S., Ahlhelm, M., & Gelinsky, M. (2023). 3D bioprinting of mineralizing cyanobacteria as novel approach for the fabrication of living building materials. Front Bioeng Biotechnol, (11), 1–14. 10.3389/fbioe.2023.1145177

Scardifield, K., McLean, N., Kuzhiumparambil, U., Ralph, P. J., Neveux, N., Isaac, G., & Schork, T. (2023). Biomasonry products from macroalgae: A design driven approach to developing biomaterials for carbon storage, Journal of Applied Phycology, 36, 935–950. 10.1007/s10811-023-03051-7

Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015

Vargas, M. (s.f.). Proyectan masificar uso de cascarilla de arroz para construir viviendas seguras a bajo costo, Andina. https://andina.pe/agencia/noticia-proyectan-masificar-uso-cascarilla-arroz-para-construir-viviendas-seguras-a-bajo-costo-278583.aspx

Vergara, I. (2021). Crean ladrillos ecológicos resistentes al frío y a la humedad para zonas altoandinas,” Andina. https://andina.pe/agencia/noticia-crean-ladrillos-ecologicos-resistentes-al-frio-y-a-humedad-para-zonas-altoandinas-856980.aspx?fbclid=IwAR0ZUW3QBrixEQDa6aMdw9aFflyFDQ2SKiK0ExeSCPtCvzO-gqG8FkSHB60_aem_AeCY7-BQ2i7otXavFyeDaAUDhVTrydvP3CXZyWQGMzxpMANhN6M4TsxcMyhd6Ngn5T83LlYRMrgQxe4OnZ7yT6bq

Xiong, X., Wang, L., Yu, K. M., & Tsang, D. C. (2020). Sustainable carbohydrate-derived building materials, Bio-based Materials and Biotechnologies for Eco-efficient Construction, 285–304. 10.1016/B978-0-12-819481-2.00014-3

Yadav, M., & Saini, A. (2022). Opportunities & challenges of hempcrete as a building material for construction: An overview. Materials Today: Proceedings, 65(2), 2021–2028. https://doi.org/10.1016/j.matpr.2022.05.576

Yang, Y. (2019). Bio-based flame retardant for sustainable building materials [Tesis doctoral, Universitat Politècnica de Catalunya]. http://hdl.handle.net/10803/668530

Yuan, P. F., Chai, H., Yan, C., & Leach, N. (2021). The 3rd International Conference on Compu-tational Design and Robotic Fabrication (CDRF 2021). https://link.springer.com/book/10.1007/978-981-16-5983-6

Zuta, L. (s.f.). Piura: científicos fabrican ladrillos y otras piezas constructivas con plástico reciclado. Andina. https://andina.pe/agencia/noticia-piura-cientificos-fabrican-ladrillos-y-otras-piezas-constructivas-plastico-reciclado-890674.aspx

Publicado

2024-07-20

Cómo citar

Jesus Aranda, D. (2024). Biodiseño de Materiales de Construcción Sostenibles. Aporte Santiaguino, 17(2), Pág. 273–291. https://doi.org/10.32911/as.2024.v17.n2.1183

Número

Sección

Artículos de Revisión

Artículos similares

También puede {advancedSearchLink} para este artículo.