Efectividad de Sansevieria trifasciata y Spathiphyllum para purificar el formaldehído en ambientes interiores

Autores/as

  • Mg. Kevin Abner Ortega Quispe Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Huancayo, Perú
  • Madeleynee Pacheco Huaman Facultad de Ingeniería, Universidad Continental, Huancayo, Perú
  • Ana María Quispe Rivera Escuela de Postgrado de la Facultad de Educación, Universidad Nacional Mayor de San Marcos, Lima, Perú
  • Arlitt Lozano Povis Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Huancayo, Perú
  • Kelly Monago Torres Facultad de Ingeniería, Universidad Continental, Huancayo, Perú

DOI:

https://doi.org/10.32911/as.2023.v16.n2.1051

Palabras clave:

Sansevieria trifasciata, Spathiphyllum, formaldehido, COV, ambiente interior, cámara cerrada

Resumen

Se analizó la reducción del formaldehído, como contaminante común del aire interior, mediante dos especies de plantas ornamentales: Sansevieria trifasciata y Spathiphyllum. El estudio se llevó a cabo en una cámara hermética, donde se midió el formaldehído cada media hora durante 22 horas utilizando un medidor de formaldehído. Los resultados revelaron que la combinación de ambas plantas fue la más efectiva, logrando una absorción del 98% en 22 horas, con 92,5% durante el día y 84,5% durante la noche. El Spathiphyllum redujo el 96% en 22 horas, con 91,5% durante el día y 74,75% durante la noche. Mientras tanto, la Sansevieria trifasciata disminuyó el 75,75% en 22 horas, con 57% en el día y 46,5% por la noche. Estos resultados resaltan la importancia de las plantas en la mejora de la calidad del aire, siendo la combinación de Sansevieria trifasciata y Spathiphyllum la más eficiente. Las variables de exposición a la luz y tiempo de exposición de las plantas al formaldehído también influyeron en su capacidad de reducción del contaminante. En conclusión, se demuestra el potencial de utilizar estas especies de plantas como una solución amigable con el ambiente para reducir la contaminación del aire interior y proteger la salud poblacional

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aydogan, A., & Montoya, L. D. (2011). Formaldehyde removal by common indoor plant species and various growing media. Atmospheric Environment, 45(16), 2675–2682. https://doi.org/10.1016/j.atmosenv.2011.02.062

Bandehali, S.; Miri, T. ; Onyeaka, H. ; & Kumar, P. (2021). Current state of indoor air phy-toremediation using potted plants and green walls. In Atmosphere (Vol. 12, Issue 4). MDPI AG. https://doi.org/10.3390/atmos12040473

Cerna, N. (2008). Estudio sobre la exposición ocupacional a formaldehído de trabajores preparadores de cadáveres en funerarias de la ciudad de guatemala [Tesis, Universidad San Carlos de Guate-mala]. https://biblioteca-farmacia.usac.edu.gt/Tesis/QF1065.pdf

De Gouw, J. ; & Warneke, C. (2007). Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. In Mass Spectrome-try Reviews (Vol. 26, Issue 2, pp. 223–257). https://doi.org/10.1002/mas.20119

Fjeld, T. ; Veierstedb, B. ; Sandvik, L. ; Riise, G. ; & Levy, F. (1998). The Effect of Indoor Foliage Plants on Health and Discomfort Symptoms among Office Workers. Indoor Built Environment, 7, 204–209. https://doi.org/10.1177/1420326X9800700404

Gao, X. ; Jali, Z. M. ; Abdul Aziz, A. R. ; Hizaddin, H. F. ; Buthiyappan, A. ; Jewaratnam, J. ; & Bello, M. M. (2021). Inherent health oriented design for preventing sick building syndrome during planning stage. Journal of Building Engineering, 44. https://doi.org/10.1016/j.jobe.2021.103285

Hänninen, O. ; Knol, A. B. ; Jantunen, M. ; Lim, T. A. ; Conrad, A. ; Rappolder, M. ; Carrer, P.; Fanetti, A. C. ; Kim, R. ; Buekers, J. ; Torfs, R. ; Iavarone, I. ; Classen, T. ; Horn-berg, C. ; & Mekel, O. C. L. (2014). Environmental burden of disease in Europe: As-sessing nine risk factors in six countries. In Environmental Health Perspectives (Vol. 122, Issue 5, pp. 439–446). Public Health Services, US Dept of Health and Human Services. https://doi.org/10.1289/ehp.1206154

Kotzias, D. (2022). Exposure to volatile organic compounds in indoor/outdoor environ-ments and methodological approaches for exposure estimates -the European paradigm. Journal of Hazardous Materials Advances, 8, 100197. https://doi.org/10.1016/j.hazadv.2022.100197

Liu, F. ; Yan, L. ; Meng, X. ; & Zhang, C. (2022). A review on indoor green plants employed to improve indoor environment. In Journal of Building Engineering (Vol. 53). Elsevier Ltd. https://doi.org/10.1016/j.jobe.2022.104542

Liu, N. ; Fang, L. ; Liu, W. ; Kan, H. ; Zhao, Z. ; Deng, F. ; Huang, C. ; Zhao, B. ; Zeng, X. ; Sun, Y. ; Qian, H. ; Mo, J. ; Sun, C. ; Guo, J. ; Zheng, X. ; Bu, Z. ; Weschler, L. B. ; & Zhang, Y. (2023). Health effects of exposure to indoor formaldehyde in civil buildings: A systematic review and meta-analysis on the literature in the past 40 years. In Building and Environment (Vol. 233). Elsevier Ltd. https://doi.org/10.1016/j.buildenv.2023.110080

Maung, T. Z. ; Bishop, J. E. ; Holt, E. ; Turner, A. M. ; & Pfrang, C. (2022). Indoor Air Pol-lution and the Health of Vulnerable Groups: A Systematic Review Focused on Particu-late Matter (PM), Volatile Organic Compounds (VOCs) and Their Effects on Children and People with Pre-Existing Lung Disease. In International Journal of Environmental Re-search and Public Health (Vol. 19, Issue 14). MDPI. https://doi.org/10.3390/ijerph19148752

OMS. (2021). Directrices mundiales de la OMS sobre la calidad del aire Resumen ejecutivo.

Osman. (2011). Calidad del aire interior. In Observatorio de Salud y Medio Ambiente de Andalu-cía (pp. 1–134).

Permana, B. H. ; Thiravetyan, P. ; & Treesubsuntorn, C. (2022). Effect of airflow pattern and distance on removal of particulate matters and volatile organic compounds from cigarette smoke using Sansevieria trifasciata botanical biofilter. Chemosphere, 295, 133919. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133919

Salt, D. E. ; Blaylock, M. ; Kumar, N. P. B. A. ; Dushenkov, V. ; Ensley, B. D. ; Chet, I. ; & Raskin, I. (1995). Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Bio/Technology 1995 13:5, 13(5), 468–474. https://doi.org/10.1038/nbt0595-468

Siswanto, D. ; Permana, B. H. ; Treesubsuntorn, C. ; & Thiravetyan, P. (2020). Sansevieria trifasciata and Chlorophytum comosum botanical biofilter for cigarette smoke phytore-mediation in a pilot-scale experiment—evaluation of multi-pollutant removal efficiency and CO2 emission. Air Quality, Atmosphere and Health, 13(1), 109–117. https://doi.org/10.1007/s11869-019-00775-9

Smith, A. ; & Pitt, M. (2011). Healthy workplaces: Plantscaping for indoor environmental quality. Facilities, 29(3), 169–187. https://doi.org/10.1108/02632771111109289

Sriprapat, W. ; Suksabye, P. ; Areephak, S. ; Klantup, P. ; Waraha, A. ; Sawattan, A. ; & Thiravetyan, P. (2014). Uptake of toluene and ethylbenzene by plants: Removal of vol-atile indoor air contaminants. Ecotoxicology and Environmental Safety, 102(1), 147–151. https://doi.org/10.1016/j.ecoenv.2014.01.032

Teiri, H. ; Pourzamzni, H., & Hajizadeh, Y. (2018). Phytoremediation of formaldehyde from indoor environment by ornamental plants: An approach to promote occupants health. International Journal of Preventive Medicine, 9(1). https://doi.org/10.4103/ijpvm.IJPVM_269_16

Vogelezang, J. V. M. (1992). Effect of root-zone and air temperature on flowering and growth of Spathiphyllum and Guzmania mtnor “Empire.” In Scientia Horticulturae (Vol. 49).

Wang, L. ; Sheng, Q. ; Zhang, Y. ; Xu, J. ; Zhang, H. ; & Zhu, Z. (2020). Tolerance of fif-teen hydroponic ornamental plant species to formaldehyde stress. Environmental Pollu-tion, 265. https://doi.org/10.1016/j.envpol.2020.115003

Wang, Z. ; Pei, J. ; & Zhang, J. S. (2014). Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification. Journal of Hazardous Materials, 280, 235–243. https://doi.org/10.1016/j.jhazmat.2014.07.059

WHO. (1989). Indoor air quality: Organic pollutants. Environmental Technology Letters, 10(9), 855–858. https://doi.org/10.1080/09593338909384805.

WHO. (2010). Selected Pollutants (WHO Regional Office for Europe, Ed.; Vol. 1). www.euro.who.int.

Yang, Q. ; Wang, H. ; Wang, J. ; Lu, M. ; Liu, C. ; Xia, X. ; Yin, W. ; & Guo, H. (2018). PM2.5-bound SO42– absorption and assimilation of poplar and its physiological re-sponses to PM2.5 pollution. Environmental and Experimental Botany, 153, 311–319. https://doi.org/10.1016/j.envexpbot.2018.06.009.

Yeh, D. M. ; Lin, L. ; & Wright, C. J. (2000). Effects of mineral nutrient deficiencies on leaf development, visual symptoms and shoot-root ratio of Spathiphyllum. Scientia Horticul-turae, 86, 223–233.

Yin, P. ; Brauer, M. ; Cohen, A. J. ; Wang, H. ; Li, J. ; Burnett, R. T. ; Stanaway, J. D. ; Cau-sey, K. ; Larson, S. ; Godwin, W. ; Frostad, J. ; Marks, A. ; Wang, L. ; Zhou, M. ; & Murray, C. J. L. (2020). The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: an analysis for the Global Bur-den of Disease Study 2017. The Lancet Planetary Health, 4(9), e386–e398. https://doi.org/10.1016/S2542-5196(20)30161-3.

Descargas

Publicado

2023-12-20

Cómo citar

Ortega Quispe, K. A., Pacheco Huaman, M. ., Quispe Rivera, A. M. ., Lozano Povis, A. ., & Monago Torres, K. (2023). Efectividad de Sansevieria trifasciata y Spathiphyllum para purificar el formaldehído en ambientes interiores. Aporte Santiaguino, 16(2), Pág. 138–153. https://doi.org/10.32911/as.2023.v16.n2.1051

Número

Sección

Artículos Originales