Effectiveness of Sansevieria trifasciata and Spathiphyllum to purify formaldehyde in indoor environments

Authors

  • Kevin Abner Ortega Quispe Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Huancayo, Perú
  • Madeleynee Pacheco Huaman Facultad de Ingeniería, Universidad Continental, Huancayo, Perú
  • Ana María Quispe Rivera Escuela de Postgrado de la Facultad de Educación, Universidad Nacional Mayor de San Marcos, Lima, Perú
  • Arlitt Lozano Povis Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Huancayo, Perú
  • Kelly Monago Torres Facultad de Ingeniería, Universidad Continental, Huancayo, Perú

DOI:

https://doi.org/10.32911/as.2023.v16.n2.1051

Keywords:

Sansevieria trifasciata, Spathiphyllum, formaldehyde, VOC, indoor environment, closed chamber

Abstract

The reduction of formaldehyde, as a common indoor air pollutant, was analyzed using two species of ornamental plants: Sansevieria trifasciata and Spathiphyllum. The study was conducted in an airtight chamber, where formaldehyde was measured every half hour for 22 hours using a formaldehyde meter. The results revealed that the combination of both plants was the most effective, achieving 98% absorption in 22 hours, with 92,5% during the day and 84,5% at night. Spathiphyllum reduced 96% in 22 hours, with 91,5% during the day and 74,75% at night. Meanwhile, Sansevieria trifasciata decreased 75,75% in 22 hours, with 57% during the day and 46,5% at night. These results highlight the importance of plants in improving air quality, with the combination of Sansevieria trifasciata and Spathiphyllum being the most efficient. The variables of light exposure and time of exposure of the plants to formaldehyde also influenced their ability to reduce the pollutant. In conclusion, the potential of using these plant species as an environmentally friendly solution to reduce indoor air pollution and protect population health is demonstrated.

Downloads

Download data is not yet available.

References

Aydogan, A., & Montoya, L. D. (2011). Formaldehyde removal by common indoor plant species and various growing media. Atmospheric Environment, 45(16), 2675–2682. https://doi.org/10.1016/j.atmosenv.2011.02.062

Bandehali, S.; Miri, T. ; Onyeaka, H. ; & Kumar, P. (2021). Current state of indoor air phy-toremediation using potted plants and green walls. In Atmosphere (Vol. 12, Issue 4). MDPI AG. https://doi.org/10.3390/atmos12040473

Cerna, N. (2008). Estudio sobre la exposición ocupacional a formaldehído de trabajores preparadores de cadáveres en funerarias de la ciudad de guatemala [Tesis, Universidad San Carlos de Guate-mala]. https://biblioteca-farmacia.usac.edu.gt/Tesis/QF1065.pdf

De Gouw, J. ; & Warneke, C. (2007). Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. In Mass Spectrome-try Reviews (Vol. 26, Issue 2, pp. 223–257). https://doi.org/10.1002/mas.20119

Fjeld, T. ; Veierstedb, B. ; Sandvik, L. ; Riise, G. ; & Levy, F. (1998). The Effect of Indoor Foliage Plants on Health and Discomfort Symptoms among Office Workers. Indoor Built Environment, 7, 204–209. https://doi.org/10.1177/1420326X9800700404

Gao, X. ; Jali, Z. M. ; Abdul Aziz, A. R. ; Hizaddin, H. F. ; Buthiyappan, A. ; Jewaratnam, J. ; & Bello, M. M. (2021). Inherent health oriented design for preventing sick building syndrome during planning stage. Journal of Building Engineering, 44. https://doi.org/10.1016/j.jobe.2021.103285

Hänninen, O. ; Knol, A. B. ; Jantunen, M. ; Lim, T. A. ; Conrad, A. ; Rappolder, M. ; Carrer, P.; Fanetti, A. C. ; Kim, R. ; Buekers, J. ; Torfs, R. ; Iavarone, I. ; Classen, T. ; Horn-berg, C. ; & Mekel, O. C. L. (2014). Environmental burden of disease in Europe: As-sessing nine risk factors in six countries. In Environmental Health Perspectives (Vol. 122, Issue 5, pp. 439–446). Public Health Services, US Dept of Health and Human Services. https://doi.org/10.1289/ehp.1206154

Kotzias, D. (2022). Exposure to volatile organic compounds in indoor/outdoor environ-ments and methodological approaches for exposure estimates -the European paradigm. Journal of Hazardous Materials Advances, 8, 100197. https://doi.org/10.1016/j.hazadv.2022.100197

Liu, F. ; Yan, L. ; Meng, X. ; & Zhang, C. (2022). A review on indoor green plants employed to improve indoor environment. In Journal of Building Engineering (Vol. 53). Elsevier Ltd. https://doi.org/10.1016/j.jobe.2022.104542

Liu, N. ; Fang, L. ; Liu, W. ; Kan, H. ; Zhao, Z. ; Deng, F. ; Huang, C. ; Zhao, B. ; Zeng, X. ; Sun, Y. ; Qian, H. ; Mo, J. ; Sun, C. ; Guo, J. ; Zheng, X. ; Bu, Z. ; Weschler, L. B. ; & Zhang, Y. (2023). Health effects of exposure to indoor formaldehyde in civil buildings: A systematic review and meta-analysis on the literature in the past 40 years. In Building and Environment (Vol. 233). Elsevier Ltd. https://doi.org/10.1016/j.buildenv.2023.110080

Maung, T. Z. ; Bishop, J. E. ; Holt, E. ; Turner, A. M. ; & Pfrang, C. (2022). Indoor Air Pol-lution and the Health of Vulnerable Groups: A Systematic Review Focused on Particu-late Matter (PM), Volatile Organic Compounds (VOCs) and Their Effects on Children and People with Pre-Existing Lung Disease. In International Journal of Environmental Re-search and Public Health (Vol. 19, Issue 14). MDPI. https://doi.org/10.3390/ijerph19148752

OMS. (2021). Directrices mundiales de la OMS sobre la calidad del aire Resumen ejecutivo.

Osman. (2011). Calidad del aire interior. In Observatorio de Salud y Medio Ambiente de Andalu-cía (pp. 1–134).

Permana, B. H. ; Thiravetyan, P. ; & Treesubsuntorn, C. (2022). Effect of airflow pattern and distance on removal of particulate matters and volatile organic compounds from cigarette smoke using Sansevieria trifasciata botanical biofilter. Chemosphere, 295, 133919. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133919

Salt, D. E. ; Blaylock, M. ; Kumar, N. P. B. A. ; Dushenkov, V. ; Ensley, B. D. ; Chet, I. ; & Raskin, I. (1995). Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Bio/Technology 1995 13:5, 13(5), 468–474. https://doi.org/10.1038/nbt0595-468

Siswanto, D. ; Permana, B. H. ; Treesubsuntorn, C. ; & Thiravetyan, P. (2020). Sansevieria trifasciata and Chlorophytum comosum botanical biofilter for cigarette smoke phytore-mediation in a pilot-scale experiment—evaluation of multi-pollutant removal efficiency and CO2 emission. Air Quality, Atmosphere and Health, 13(1), 109–117. https://doi.org/10.1007/s11869-019-00775-9

Smith, A. ; & Pitt, M. (2011). Healthy workplaces: Plantscaping for indoor environmental quality. Facilities, 29(3), 169–187. https://doi.org/10.1108/02632771111109289

Sriprapat, W. ; Suksabye, P. ; Areephak, S. ; Klantup, P. ; Waraha, A. ; Sawattan, A. ; & Thiravetyan, P. (2014). Uptake of toluene and ethylbenzene by plants: Removal of vol-atile indoor air contaminants. Ecotoxicology and Environmental Safety, 102(1), 147–151. https://doi.org/10.1016/j.ecoenv.2014.01.032

Teiri, H. ; Pourzamzni, H., & Hajizadeh, Y. (2018). Phytoremediation of formaldehyde from indoor environment by ornamental plants: An approach to promote occupants health. International Journal of Preventive Medicine, 9(1). https://doi.org/10.4103/ijpvm.IJPVM_269_16

Vogelezang, J. V. M. (1992). Effect of root-zone and air temperature on flowering and growth of Spathiphyllum and Guzmania mtnor “Empire.” In Scientia Horticulturae (Vol. 49).

Wang, L. ; Sheng, Q. ; Zhang, Y. ; Xu, J. ; Zhang, H. ; & Zhu, Z. (2020). Tolerance of fif-teen hydroponic ornamental plant species to formaldehyde stress. Environmental Pollu-tion, 265. https://doi.org/10.1016/j.envpol.2020.115003

Wang, Z. ; Pei, J. ; & Zhang, J. S. (2014). Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification. Journal of Hazardous Materials, 280, 235–243. https://doi.org/10.1016/j.jhazmat.2014.07.059

WHO. (1989). Indoor air quality: Organic pollutants. Environmental Technology Letters, 10(9), 855–858. https://doi.org/10.1080/09593338909384805.

WHO. (2010). Selected Pollutants (WHO Regional Office for Europe, Ed.; Vol. 1). www.euro.who.int.

Yang, Q. ; Wang, H. ; Wang, J. ; Lu, M. ; Liu, C. ; Xia, X. ; Yin, W. ; & Guo, H. (2018). PM2.5-bound SO42– absorption and assimilation of poplar and its physiological re-sponses to PM2.5 pollution. Environmental and Experimental Botany, 153, 311–319. https://doi.org/10.1016/j.envexpbot.2018.06.009.

Yeh, D. M. ; Lin, L. ; & Wright, C. J. (2000). Effects of mineral nutrient deficiencies on leaf development, visual symptoms and shoot-root ratio of Spathiphyllum. Scientia Horticul-turae, 86, 223–233.

Yin, P. ; Brauer, M. ; Cohen, A. J. ; Wang, H. ; Li, J. ; Burnett, R. T. ; Stanaway, J. D. ; Cau-sey, K. ; Larson, S. ; Godwin, W. ; Frostad, J. ; Marks, A. ; Wang, L. ; Zhou, M. ; & Murray, C. J. L. (2020). The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: an analysis for the Global Bur-den of Disease Study 2017. The Lancet Planetary Health, 4(9), e386–e398. https://doi.org/10.1016/S2542-5196(20)30161-3.

Published

2023-12-20

How to Cite

Ortega Quispe, K. A., Pacheco Huaman, M. ., Quispe Rivera, A. M. ., Lozano Povis, A. ., & Monago Torres, K. (2023). Effectiveness of Sansevieria trifasciata and Spathiphyllum to purify formaldehyde in indoor environments. Aporte Santiaguino, 16(2), Pág. 138–153. https://doi.org/10.32911/as.2023.v16.n2.1051

Issue

Section

Artículos Originales