Susceptibility to degradation by absorbed hydrogen of AISI 1045 steel subjected to tests of slow traction and static fatigue in a hydrogenated medium

Authors

  • Optaciano Vásquez García Universidad Nacional Santiago Antúnez de Mayolo. Huaraz, Perú

DOI:

https://doi.org/10.32911/as.2011.v4.n1.630

Keywords:

Hydrogen embrittlement, static fatigue, mechanical resistance, ductility, esferoidized

Abstract

In this paper is evaluation of susceptibility to hydrogen degradation ofAl SI steel 1045. Susceptibility of AISI 1045 steel to hydrogen embrittlement has been made by mechanical tensile test a static fatigue in hydrogen generation environments. Test were carred out using round notched specimens subjected to axial tensile load in O, IN EI2SO4 solution with to 0,25 g/1 arsenite sodium using hydrogen cathodic charging technique at densities current various. Reduction in area, tensile strength and fracture delayed of time were chosen relative changes as measures of susceptibility to hydrogen embrittlement. Fracture modes of failed samples were examined with of microscope. Mechanical test in inert environmental (air) comparisons and mechanical test in hydrogen generating environment show that both steels are susceptibility to hydrogen embrittlement.
Samples of esferoidized steel have lower lost of ductility and strength than base metal samples. These variations in mechanical properties display a direct bearing on the current density. Also, both steels undergo changes in the fracture mode from a ductile to a brittle morphology in base metal while esferoidized morphology steel changes from highly ductile to a mixture of brittle fracture with ductile zones. These variations change with permanence time of hydrogen generated environmental steel.

Downloads

Download data is not yet available.

References

Albístur, A., Femandez, J. 2005. Influencia del hidrógeno en las propiedades mecánicas de los aceros Micro 1000 y Formax. Males de Mecánica de Fractura. Vol 22. pp 155-160.

ASTM G129-95. 1996. Slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assited cracking.

Beachem, C.D. 1972. A new model for hydrogenassi sted cracking. Metalls Trans.; 3(2) pp 437-451.

Bemstein, 1.M., and Thompson, A.W. 1976. Effect of metallurgical variables on environmental fracture of steels. Intl. Metall. Rey., 21, pp269-287.

Bimbaum, J.K., Sofronis, R 1994. Hydrogenenhanced localized plasticity-A mechanism for hydrogen related fracture. Mater Sci. Eng. A-Struc. Mater. Prop. 176A (1-2) 191-202.

Bimbaun, H.K, 1990).Mechanism of Hydrogen- Related Fracture of Metals. In: Ganglof, R.P, Ives, M.B (edis), First International Conference on Environmental-induced Cracking of Metals, NACE, Houston, TX, pp. 21-27.

Blanco, E., y Andreone, C., 1984. Tesis Doctoral CNEA. Argentina

Cabo, A. 1982. Tecnología de tratamientos térmicos, CNEA. Argentina 1982 pp.74-80.

Cayón, A., Alvarez, J., 2003. Gutierrez, F. Influencia de la microestructura y de los estados triaxiales de tensión en fenómenos fisuración inducida por el ambiente. Anales de Mecánica de la Fractura. Vol 10, pp 273-278.

Chang, S.C. and Hirth, J.P. 1985. Hydrogen Degradation of Spheroidized AISI 1090 Steels. Metall. Transac. Vol 16A pp 1417-1425. Cialone, H.,and Asaro, R. J. 1981. Metalls trans Vol I 2A, pp 1981-1373.

Daoming Li, D. Gangloff, R.P., Scully, J.R. 2004. Hydrogen trap states in ultra high-stregth aermet 100 steel. Metall. and Mater. Transf. Vol 35A. pp 849-864.

Eliaz, N., Shachar, A., Tal., B., Eliezer, D. 2002. Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensi te embrittlement in high-strength steels. Eng Failure Analysis 9 pp 167-184.

Fukai, Y., 1993. The Metal-Hydrogen System. Basic Bulk Properties. Springer, Berlin.

Galvele, J.R., 2000. Recent developments in the surface-mobility. Corrosion Science. 27 (1)p 1-33. Gangloff, R.P., Ives, M.V. 1990. First International Conference on Environmental-induced Cracking of Metals, NACE-I0, Houston, TX.

Groenevel, T.P., and ELSEA, A.R., 1972. Hydrogen Emnbrittlement Testing, ASTM STP 543, pp 11.

Hirth, J.P, 1996. in Hydrogen effects in metals, Eds., A.W.Thompson and N.R. Moody, The minerals, Metals. Materials Society pp 507-522

Jones, R.H., (ed), 2001. Chemistry and electrochemistry of corrosion and Stress Corrosion Cracking: Symposium Honoring the Contributions of R.W Staehle. TMS, Warrendale. PA.

Kerns, G.E., Wang, M.T., Staehle., 1977. Stress Corrosion Cracking and Hydrogen Embritlement in High Strength Steels. In: Staehe, R.W, R.W., Hochman (eds). NACE, Houston, TX, pp 700-735

Kim, J.S., Park, K., Lee, D., Lee C S 2003. Effect of lntergranular Ferrite on Hydrogen Delayed Fracture Resistence of High Strength boron-added Steel. National Research Laboratory Program of the Korea Ministry of Science and Tecnology. Pp 1-9.

Manning, J. R., 1973. Theory of diffusion. Difussion ASM 1-24.

Marsh, P., Gerberech, %V, 1992. Stress corrosion cracking of higt-strength steels. In: Jone, R.H. (Ed.). Stress- corrosion Cracking. ASM International, Materials Park, OH, pp. 63-90

Meizoso, A. M., y Martinez, J.M. 2005. Propagación catastrófica de grietas. Cap 3. " Micromecanismos de Fractura".

Nelson, H.G., 1976., Film-rupture of hydrogeninduced, slow crac growth in acicular alpha-beta titanium. Metal!. Trans, A Phys. Metal!. Maten Sci. 7A(5), 621-627.

Oriani, R. A. 1990. Hydrogen Effects in Highstrength Steels. In Gangloff, R.P., ¡ves, M,B. (EDS). First Internacional Conference on Environmental.induced Cracking of Metals, NACE- 10. NACE, Houston, TX pp. 439-447.

Oriani, R.A. 1967. Hydrogen in metals. Proc. Conf. Fundamental Aspects of SCC, (eds) R. W Staeh, A. J Forty D Van Roogen (NACE). Pp 32-50.

Oriani, R.A., Hirth, J.P., Smialowslcy, M., 1985. Hydrogen degradation of ferrous alloys. Notyes p Pub!. Park, Ridge. USA.

Rajan, N., and Howard, W., 1988. A mechanical anal ysis of hydrogen into metals during cathodic hydrogen chargin. Scripta Metallurgica. Vol 22, pp 911-916

Serebrinsky, S., Carter, E.A., Ortiz, M. 2004. A quantum-mechanically informed continuum model of hydrogen embrittlement. Journal of the Mechanics and Physics of Solid. Vol 32. Pp 2403-2430.

Sieradzki, K., Newman, R. C., 1985. Brittle behavior of ductile metals during stress-corrosion cracking. Philos. Mag.A51 (1),p 95-132.

Smith, R.D., Landys, G.P., Moroef, I., Olson, D.L. y Wildeman, T.R. 2001. The determination of Hydrogen Dstribution in High-Strength Steel Welments. Welding Research.

Sofronis, P., 2001. Recent advances in the engineerirtg aspects of hydrogen embrittlement. Special number. Eng. Frac. Mech. 68(6), p 617-837.

Stroe, M. E. 2006. Hydrogen Embrittlement of Ferrous Materials. Doctoral Thesis.

Talsbot - Besnard, S., 1982. International Conference Proceedings on Hydrogen problems en steel. PP 37- 42.

Tien, J.K., Thompson, A.W., Bernstein, I.M, Richard,R.J. 1976. Hydrogen transport by dislocations. Metals Trans. A; 7A pp 821-900.

Troiano, A.R., 1960. The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans. ASM 52, pp 54-80.

Turnbull, A., 2001. Modeling of environmental assisted cracking. Corrosion Science. 34(6), p 921- 960.

Zapffe, C.A and Sims C.E., 1941. Hydrogen Embrittlemen, Internal Stress andDefects in Steel, American Instante of Mining and Metallurgical Engineers, No.1307, pp.1-37.

Ziobrowski, C., Bruzoni, P., Hazarabedian, A., Ovejero, J. 2001. Influencia de los óxidos ene! daño por hidrógeno de un acero microaleado. Jornadas SAM-CONAMET-AS. pp 299-306.

Published

2019-09-04

How to Cite

Vásquez García, O. (2019). Susceptibility to degradation by absorbed hydrogen of AISI 1045 steel subjected to tests of slow traction and static fatigue in a hydrogenated medium. Aporte Santiaguino, 4(1), Pág: 15–26. https://doi.org/10.32911/as.2011.v4.n1.630

Issue

Section

Artículos Originales