Empirical equations for estimating the intensities of maximum annual rainfall of different durations, Huaraz – Peru

Authors

DOI:

https://doi.org/10.32911/as.2024.v17.n2.1194

Keywords:

Precipitation intensity, Duration, Return period, Gumbel Distribution

Abstract

The objective of the research work was to obtain empirical equations for estimating the intensities of maximum annual rainfall of different durations and return periods in the city of Huaraz, which serve for the hydrological design of hydraulic storm drainage structures. The maximum annual rainfall in 24 hours from the Santiago Antúnez de Mayolo meteorological station best fits the Gumbel probability distribution, for this purpose the MINITAB 20 software was used. With the Dyck – Peschke equation, the maximum annual rainfall was disaggregated for durations of less than 24 hours. With these disaggregated values, the empirical equations of the intensities of maximum annual rainfall of different durations at the Santiago Antúnez de Mayolo meteorological station were obtained. The Koutsoyannis equation is the most appropriate for precipitation intensities for durations less than 24 hours and different return periods for the Santiago Antúnez de Mayolo – Huaraz meteorological station.

Downloads

Download data is not yet available.

Author Biography

Toribio Reyes Rodríguez, Universidad Nacional Santiago Antúnez de Mayolo - Huaraz - Perú.

 

 

References

Álvaro, J. (2020). Alternative model of intense rainfall equation obtained from daily rainfall disaggregation. Revista Brasileira de Recursos Hídricos 25(2). https://acortar.link/5WzvAT

Awadallah, A., ElGamal, M., ElMostafa, ElBadry, H. (2011) Developing Intensity-Duration-Frequency Curves in Scarce Data Region: An Approach using Regional Analysis and Satellite Data. Engineering, 3, 215-226. https://acortar.link/SqfpQN

Chow, V., Maidment, D., & Mays, L. (1994). Hidrología aplicada. McGraw-Hill

Gamarra, M. (2021). Metodología para la estimación de parámetros de cálculo de tormentas de diseño con datos pluviométricos en Bolivia. Ventana Científica: 11(18). https://acortar.link/hVtg5E

Hu, H., & Ayyub, B. (2019). Machine learning for projecting extreme precipitation intensity for short durations in changing climate. Geosciences 2019, 9(5). https://acortar.link/sSJB1w

Kim, S., & Singh, V. (2015). Spatial disaggregation of areal rainfall using two different artificial neural networks models. Water. https://acortar.link/c2Xaix

Kourtis, I., & Tsihrintzis, V. (2023). Update of intensity – duration – frequency (IDF) curves under climate change: a review. Water Supply 2(3), 49 – 51. https://acortar.link/foXiiw

McCuen, R. (2005). Hydrologic analysis and design. Pearson Prentice Hall.

Monjo, R., & Mesenguer-Ruiz, O. (2024). Review: Fractal geometry in precipitation. Atmosphere 2024. 15(1). https://acortar.link/XsiV4a

Linsley, R., Kohler, M., & Paulhus, J. (1988). Hidrología para ingenieros. México: McGraw-Hill

Pereyra-Díaz (2012). Two nonlinear mathematical models to estimate the intensity – duration -return period of rainfall events. Universidad y Ciencia 28 (3). https://acortar.link/U94X4s

Priambodo, S., Montarcih, L., Suhartanto, E. (2019). Hourly rainfall distribution patterns in Java island. Conferencia Web MATEC, 276. https://doi.org/10.1051/matecconf/201927604012

Villón, M. (2020). Hidrología. Ediciones Villón.

Yamoat, N., Hanchoowong, R., Yamoad, O., Chaimoon, N., & Kangrang, A. (2023). Estimation of regional intensity – duration – frecuency relationships of extreme rainfall by simple sacaling in Thailand. Journal of Water and Climate Change 14(3). https://acortar.link/2FQkF3

Published

2024-12-20

How to Cite

Reyes Rodríguez, T. (2024). Empirical equations for estimating the intensities of maximum annual rainfall of different durations, Huaraz – Peru. Aporte Santiaguino, 17(2), Pág. 201–210. https://doi.org/10.32911/as.2024.v17.n2.1194

Issue

Section

Artículos Originales