Analysis of the evolution of terrestrial relief through inverse elevation transition
DOI:
https://doi.org/10.32911/as.2024.v17.n1.1144Keywords:
Land relief, Continents, Oceans, Islands, TES, TEVAbstract
Through an examination of the Theory of Seismic Energy and the Theory of Volcanic Energy, we come to comprehend that the interplay of internal and external energies in conducive terrain has led to immeasurable transformations, assessable within geological time frames. Consequently, this study posits that the intricate evolution of Earth's crust relief stems from the inverse shift in elevations and the mobility of oceanic water masses. This, in turn, influences the location, size, shape, and quantity of continents, islands, and oceans. It is crucial to recognize that the geographical features we currently observe merely capture a momentary snapshot, due to the constant movement of the Earth's surface.
Downloads
References
Andersson, U., Begg, G., Griffin, W., Högdahl, K. (2011). Ancient and juvenile components in the continental crust and mantle: Hf isotopes in zircon from Svecofennian magmatic rocks and rapakivi granites in Sweden. Lithosphere, 102, 435–459. https://doi.org/10.1130/L162.1
Bortnikov, N., Silant’ev, S., Bea F., Montero, T., Zinger, Skolotnev, S., & Sharkov, E. (2022). Multiple Melting of a Heterogeneous Mantle and Episodic Accretion of Oceanic Crust in a Spreading Zone: Zircon U-Pb Age and Hf-O Isotope Evidence from an Oceanic Core Complex of the Mid-Atlantic Ridge. Petrology, 30, 1–24.
Henderson, J., Gallou, C., Flemming, N., Spondylis, E. (2011). The Pavlopetri Underwater Archaeology Project: investigating an ancient submerged town. Underwater archaeology and the submerged prehistory of europe, 207-218.
Jian-Jun, F., Cai, L., Chao-Ming, X., Ming, W., Jing-Wen, C. (2015). The evolution of the Bangong–Nujiang Neo-Tethys ocean: Evidence from zircon U–Pb and Lu–Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites. Tectonophysics, 655, 27-40. https://doi.org/10.1016/j.tecto.2015.04.019
Judson, S., Don, Leet L. (1982). Physical Geology. Prentice Hall.
Los tres iniciados (1990). El kybalion. EDAF.
Macías, J. L. (2005). Geología e historia eruptiva de algunos de los grandes volcanes activos de México. Boletín de la Sociedad Geológica Mexicana, 3, 379-424. http://www.scielo.org.mx/pdf/bsgm/v57n3/1405-3322-bsgm-57-03-379.pdf
Mortimer, N., Campbell, H. J., Tulloch, A. J., King, P. R., Stagpoole, V. M., Wood, R. A., Rattenbury, M. S., Sutherland, R., Adams, C. J., Collot, J., & Seton, M. (2017). Zealandia: Earth Hidden Continent. GSA Today, 27, 27-35. https://doi.org/10.1130/GSATG321A.1
Patanè, D., De Gori, P., Chiarabba, C., & Bonaccorso, A. (2003). Magma ascent and the pressurization of Mount Etna’s volcanic system. Science 299, 2061–2063. DOI: 10.1126/science.1080653
Raynal, J., Defive, E., Klee, N., Buso, R., & Laporte, D. (2023). A Tale of Old and Young Volcanoes in Monts d'Ardèche UNESCO Global Geopark (South-Eastern France). Geoconservation Research 6, 207-232. 10.30486/gcr.2023.1983724.1136
Siebe, C., Macías, J. L. (2006). Volcanic hazards in the Mexico City metropolitan area from eruptions at Popocatepetl, Nevado de Toluca, and Jocotitlán stratovolcanoes and monogenetic scoria cones in the Sierra de Chichinautzin Volcanic Field. Geological Society of America, 402, 77
Skolotnev, S., Bel’tenev, V., Lepekhina, E., Ipat’eva, I. (2010). Younger and older zircons from rocks of the oceanic lithosphere in the Central Atlantic and their geotectonic implications. Geotectonics, 44(6), 462–492.
Stanley, J., Goddio, F., Schnepp, G. (2001). Nile flooding sank two ancient cities. Nature 412, 293–294. https://doi.org/10.1038/35085628
Stanley, J., Goddio, F., Jorstad, T., & Schnepp, G. (2004). Submergence of ancient Greek cities off Egypt's Nile Delta-A cautionary tale. GSA Today, 14, 4-10.
Valverde, C., & Valverde, Y. (2020). Teoría de la energía sísmica. Aporte Santiaguino, 13(1), 103–114. https://doi.org/10.32911/as.2020.v13.n1.684
Valverde, C., Valverde, Y. (2021). Teoría de la energía volcánica. Aporte Santiaguino 14(2), 159–173. https://doi.org/10.32911/as.2021.v14.n2.779
Valverde, C., Valverde, Y., Valverde, M. (2022). Los epicentros sísmicos en las ciudades: análisis de las barreras fotoprotectoras en base a la teoría de la energía sísmica. Aporte Santiaguino 15(1), 134–148. https://doi.org/10.32911/as.2022.v15.n1.934
Valverde, C., Valverde, Y., Valverde, M. (2022). The conductivity of the oceans: Analysis Based on the Seismic Energy Theory. In Advanced Engineering Forum. Trans Tech Publications 47, 81–87. https://doi.org/10.4028/p-l2f336
Valverde, C., et al. (2023) Theory of Seismic Energy (TES) and Theory of Volcanic Energy (TEV): TES and TEV two propolsals that revolutionize our knowledge. Eliva Press.
Valverde, C., Valverde, Y., Valverde, M. (2023). Theory of Volcanic Energy (Expanded English Edition). Modern Sciences Journal 12 (1), 76-86. https://doi.org/10.57184/msj.v12i1.28
Walker, J., Gaffney, V., Fitch, S., Harding, R., Muru, M., Tingle, M., & Fraser, A. (2022). The archaeological context of Doggerland during the final Palaeolithic and Mesolithic. Europe's Lost Frontiers. (pp. 63-88). Archaeopress.
Xiumian, H., Anlin, M., Weiwei, X., Garzanti, E., Yong, C., Shi-Min, L., Gaoyuan, S., Wen. L. (2022). Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Science Reviews, 229. https://doi.org/10.1016/j.earscirev.2022.104031
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yulisa Valverde Romero, Milton Valverde Romero, Jhair Airtor Tarazona Valverde, Giorgio Aldair Tarazona Valverde, Yehosúa Antony Tarazona Valverde
This work is licensed under a Creative Commons Attribution 4.0 International License.