Ballast coefficient to determine soil-structure interaction by geotechnical zones in Huaraz
DOI:
https://doi.org/10.32911/as.2023.v16.n2.1093Keywords:
Ballast Coefficient; Soil – Structure Interaction; Test Load Plate; EarthquakesAbstract
The research was developed in the district of Huaraz, the objective was to determine values of ballast coefficients in the 05 geotechnical zones established in the seismic microzonation plan of the town and then use them in mathematical models that consider the soil-structure interaction, for this The methodology that was followed was through an applied type of research, with a correlational level, a non-experimental - transversal design, having the 05 geotechnical zones as the population and sample. To search for the data, the appropriately distributed load plate test and special laboratory tests were carried out. The results obtained from the load plate test were grouped into 03 zones, Zone I has a ballast coefficient variation between 0.50 to 2.00 kg/cm3, zone II between 2.01 to 4.00 kg/cm3 and zone III between 4.01 to 7.00 kg/cm3, the research concludes with the modeling of a house considering soil-structure interaction, where an inversely proportional relationship was found between the values of ballast coefficients with the mezzanine distortion of the house, zone I presented greater mezzanine distortion by having unfavorable values, while zone III reflected lower distortion values by having higher values of ballast coefficients.
Downloads
References
Alarcón, G. D. E. (2021). Relación de la Caracterización de los Suelos con el Coeficiente de Balasto en el Distrito de Pilcomayo [tesis para optar título profesional, Universidad Peruana los Andes]. Repositorio Institucional UN https://hdl.handle.net/20.500.12848/2771.
Ada M. y Ayvaz Y. (2019). The Structure-Soil-Structure Interaction Effects on the Response of the Neighbouring Frame Structures. Latin American Journal of Solids and Structures. 16 (08), 224. https://doi.org/10.1590/1679-78255762.
Anand, V. & Kumar, S. (2020). Seismic Performance of Semi-Rigid Steel Frames Considering Soil-Structure Interaction. In Indian Structural Steel Conference, 687-697. DOI: 10.1007/978-981-19-9390-9_56.
Alarcón, G. D. E. (2021). Relación de la Caracterización de los Suelos con el Coeficiente de Balasto en el Distrito de Pilcomayo [tesis para optar título profesional, Universidad Peruana los Andes]. Repositorio Institucional UN https://hdl.handle.net/20.500.12848/2771
Aquino, C. C. M., y Rodríguez, C. M. T. (2015). Comparación de la respuesta estructural de los módulos B y C de la IE Julio Ramón Ribeyro considerando y sin considerar la in-teracción suelo-estructura [tesis para optar título profesional, Universidad Nacional de Ucayali]. Repositorio Institucional UN https://repositorio.upn.edu.pe/handle/11537/9431.
Bapir, B.; Abrahamczyk, L.; Wichtmann, T.; Prada-Sarmiento, L. (2023). Soil-structure inter-action: A state-of-the-art review of modeling techniques and studies on seismic re-sponse of building structures. Frontiers in Built Environment, 9 (10), 2297-3362. https://doi.org/10.3389/fbuil.2023.1120351.
Camilo, A. y Andres, J. (2020). Implementación de un ensayo a escala reducida en una cimen-tación superficial para el estudio del coeficiente de balasto [Tesis de Pre Grado, Uni-versidad Católica de Colombia]. Repositorio Institucional Universidad Católica de Colombia - RIUCaC. https://repository.ucatolica.edu.co/bitstream/10983/25785/1/Trabajo%20de%20gra-do%20placa%20de%20carga_Qui%C3%B1onesJhimer_Contreras_Camilo%20biblioteca.pdf.
Contreras, T. A. C., y Quiñonez, D. J. A. (2021). Implementación de un ensayo a escala redu-cida en una cimentación superficial para el estudio del coeficiente de balasto [tesis para optar título profesional, Universidad Católica de Colombia]. Repositorio Institu-cional UN https://repository.ucatolica.edu.co/entities/publication/febc51e1-cd96-43fc-a9c8-9e2c8aa0a801.
Menasri, Y. y Brahimi, M.(2023). Assessment Of The Effects Of Soil-Structure Interaction On The Seismic Response Of The RC Frame Buildings By Developing Seismic Fra-gility Curves Based On SPO2IDA Analysis. Journal of Applied Science and Engineering (Taiwan), 27(2), 2075-2085. http://dx.doi.org/10.6180/jase.202402_27(2).0009.
Tabish, A.; Eldin, M.; Waseem H. (2023). The Effect of Soil-Structure Interaction on the Seismic Response of Structures Using Machine Learning, Finite Element Modeling and ASCE 7-16 Methods. Seismology and Earthquake Engineering. 23(4), 2047. https://doi.org/10.3390/s23042047.
Taforel, P.; Renouf, M.; Dubois, F.; Voivret, J. (2016). Finite Element-Discrete Element Coupling Strategies for the Modelling of Ballast-Soil Interaction. International Journal of Railway Technology. 4 (2), 73-95. https://hal.science/hal-01279251.
Tena, A. (2019). Interacción suelo-estructura. reflexiones sobre su importancia en la respuesta dinámica de estructuras durante sismos. Revista Internacional de Ingeniería de Estructuras. 24 (2), 141-165. https://journal.espe.edu.ec/ojs/index.php/riie/article/view/1282/944
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ruben Dario Aranda Leyva, Reynaldo Melquiades Reyes Roque
This work is licensed under a Creative Commons Attribution 4.0 International License.