Compendium of methodologies on seismic effects for design of cable-stayed, suspension and arch bridges

Authors

  • Jaime Walter Blas Cano Universidad Nacional Santiago Antúnez de Mayolo - Huaraz - Perú https://orcid.org/0000-0002-0919-9306
  • Rodrigo Antonio Salazar Rojas Universidad Nacional Santiago Antúnez de Mayolo - Huaraz - Perú.
  • Franklin Enrique Vega Gonzáles Universidad Nacional Santiago Antúnez de Mayolo - Huaraz - Perú.
  • Antonio Eduardo Velásquez Andia Universidad Nacional Federico Villarreal, Lima, Perú

DOI:

https://doi.org/10.32911/as.2023.v16.n2.1076

Keywords:

Bridges; Arch; Cable-stayed; Suspension; Earthquake

Abstract

This compendium presents a series of methodologies relevant to investigations related to the evaluation of seismic effects in various types of bridges based on their mechanical properties, structural configurations and geometric distributions. The objective was to analyze the methodologies on seismic effects in bridges from the selected investigations. Details on the seismic behavior of specific bridge types including arch, cable-stayed and suspension bridges are presented and discussed using specific methodologies. In addition, the results of relevant studies in the field of earthquake engineering of bridges are reviewed and compared. It is concluded that these recent studies cover several advanced aspects, from seismic vulnerability assessment to the application of hysteretic methodologies in cable-stayed bridges, and new evaluation criteria such as fragility curves and improvements of design methods for suspension bridges, in addition to determining four main methodologies used in the analysis of seismic effects in bridges. Taken together, this research elements contribute to the knowledge and practice of structural and seismic engineering in bridges, providing valuable information to strengthen the safety of these structures in earthquake-prone regions.

Downloads

Download data is not yet available.

References

Bin, Y.; Hexin, F.; Rui, G.; Gaoxiang, Z., & Haoran, X. (2022). Seismic response law of suspension bridge-track system of high-speed railway. Advances in Mechanical Engineering, 14(7). https://doi.org/10.1177/16878132221112494

Campos, A., & Martínez, A. (2020). Estudio del comportamiento a solicitaciones sísmicas en puentes atirantados [Maestría, Universidad de Sevilla]. https://idus.us.es/handle/11441/100769

Chávez, W. Maluquish, R., & Pezo, P. (2022). Vulnerabilidad estructural del puente Huaura ante solicitaciones sísmicas, ubicado en el distrito de Huaura – Lima. [Universidad Nacional de Barranca]. https://alicia.concytec.gob.pe/vufind

/Record/UNAB_5c68e288aa01b4dd41a72f727aa1535c

Chen, W. F., & Duan, L. (2014). Bridge Engineering Handbook—Seismic Design. CRC Press. https://www.routledge.com/Bridge-Engineering-Handbook-Seismic-Design/Chen-Duan/p/book/9781439852187

Chenchen, J.; Yangxun, O.; Weiyu, T.; Shengjun, H.; Rui, L.; Yuhao, J., & Bin, S.( 2023). Improved Shape-Finding Method and Parametric Study for Designing Asymmetric Suspension Bridges in Mountainous Terrain. Advances in Civil Engineering, 2023, 14. https://doi.org/10.1155/2023/7508814

Cheng-Qi, X.; Zhi-Wen, Z., & Jin, J. (2022). Response Surface-Based Finite Element Model Updating of Steel Box-Girder Bridges with Concrete Composite Decks. Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/4298933

Gamarra, R., & Mamani, E. (2022). Determinación del Campo de Desplazamientos y Fuerzas Internas mediante análisis lineal y no lineal del puente arco de acero estructural Enrique P. Mejía, Sicuani, Canchis, Cusco—Perú [Universidad Andina del Cusco]. https://repositorio.uandina.edu.pe/handle/20.500.12557/5005

Huerta, C., & Asmat, C. (2022). Comparación del desempeño sísmico del puente Quilca sin sistemas de protección sísmica y aplicando sistemas de aislamiento y disipación de energía.https://alicia.concytec.gob.pe/vufind/Record/RPUC_8373277fb94ac23eb8fd3d71351754ee

Perea, C.; Aleala, J.; Yepes, V.; Gonzales-Vidosaa, F., & Hospitaler, A. (2017). Design of reinforced concrete bridge frames by heuristic optimization. Advances in Engineering Software, 39(2008), 676-688.

Tacas, K., & Olarte, J. (2018). Vulnerabilidad Sísmica del Puente Primavera [Universidad Nacional de Ingeniería]. https://repositorio.uni.edu.pe/handle/20.500.14076/13758

Weng, F., & Fuxing, L. (2023). Mechanical Analysis of Junction Pier of Fuzhou-Xiamen High-Speed Railway Rigid-Frame Bridge. Advances in Civil Engineering, 2023. https://doi.org/10.1155/2023/7563415

Xiangong, Z.; Lei, C.; Heng, H.; Xiaobo, Z.; Hanhao, Z., & Zhiqing, Z. (2022). Seismic Fragility Analysis of Self-Anchored Suspension Bridge Considering Damping Effect. Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/6980221

Yong, Z.; Xueqin, L., & Yutong, Z. (2022). Investigation on Seismic Response of Long-Span Special Steel Truss Cable-Stayed Bridge. Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/2262289

Zambrano, O., & Mosqueira, M. (2023). Vulnerabilidad Sísmica del Puente Malcas-Condebamba-Cajabamba-Cajamarca [Universidad Nacional de Cajamarca]. https://alicia.concytec.gob.pe/vufind/Record/RUNC_7b0b6ae3b0c039e6b91055406b929d28

Zhou, X.; Cao, L.; Han, H.; Zheng, X.; Zhang, H., & Zhang, Z. (2022). Seismic Fragility Analysis of Self-Anchored Suspension Bridge Considering Damping Effect. Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/6980221

Zite, L.; Genhui, W.; Jiang, F.; Weihong, W.; Yue, J., & Xiaozhong, L. (2022). Seismic Response Analysis of Multidimensional and Multiangle Long-Span Top-Supported CFST Arch Bridge. Advances in Civil Engineering, 2022. https://www.hindawi.com/journals/ace/2022/6807916/

Published

2023-12-20

How to Cite

Blas Cano, J. W., Salazar Rojas , R. A., Vega Gonzáles, F. E. ., & Velásquez Andia, A. E. . (2023). Compendium of methodologies on seismic effects for design of cable-stayed, suspension and arch bridges. Aporte Santiaguino, 16(2), Pág. 193–211. https://doi.org/10.32911/as.2023.v16.n2.1076

Issue

Section

Artículos Originales