Compendium of methodologies on seismic effects for design of cable-stayed, suspension and arch bridges
DOI:
https://doi.org/10.32911/as.2023.v16.n2.1076Keywords:
Bridges; Arch; Cable-stayed; Suspension; EarthquakeAbstract
This compendium presents a series of methodologies relevant to investigations related to the evaluation of seismic effects in various types of bridges based on their mechanical properties, structural configurations and geometric distributions. The objective was to analyze the methodologies on seismic effects in bridges from the selected investigations. Details on the seismic behavior of specific bridge types including arch, cable-stayed and suspension bridges are presented and discussed using specific methodologies. In addition, the results of relevant studies in the field of earthquake engineering of bridges are reviewed and compared. It is concluded that these recent studies cover several advanced aspects, from seismic vulnerability assessment to the application of hysteretic methodologies in cable-stayed bridges, and new evaluation criteria such as fragility curves and improvements of design methods for suspension bridges, in addition to determining four main methodologies used in the analysis of seismic effects in bridges. Taken together, this research elements contribute to the knowledge and practice of structural and seismic engineering in bridges, providing valuable information to strengthen the safety of these structures in earthquake-prone regions.
Downloads
References
Bin, Y.; Hexin, F.; Rui, G.; Gaoxiang, Z., & Haoran, X. (2022). Seismic response law of suspension bridge-track system of high-speed railway. Advances in Mechanical Engineering, 14(7). https://doi.org/10.1177/16878132221112494
Campos, A., & Martínez, A. (2020). Estudio del comportamiento a solicitaciones sísmicas en puentes atirantados [Maestría, Universidad de Sevilla]. https://idus.us.es/handle/11441/100769
Chávez, W. Maluquish, R., & Pezo, P. (2022). Vulnerabilidad estructural del puente Huaura ante solicitaciones sísmicas, ubicado en el distrito de Huaura – Lima. [Universidad Nacional de Barranca]. https://alicia.concytec.gob.pe/vufind
/Record/UNAB_5c68e288aa01b4dd41a72f727aa1535c
Chen, W. F., & Duan, L. (2014). Bridge Engineering Handbook—Seismic Design. CRC Press. https://www.routledge.com/Bridge-Engineering-Handbook-Seismic-Design/Chen-Duan/p/book/9781439852187
Chenchen, J.; Yangxun, O.; Weiyu, T.; Shengjun, H.; Rui, L.; Yuhao, J., & Bin, S.( 2023). Improved Shape-Finding Method and Parametric Study for Designing Asymmetric Suspension Bridges in Mountainous Terrain. Advances in Civil Engineering, 2023, 14. https://doi.org/10.1155/2023/7508814
Cheng-Qi, X.; Zhi-Wen, Z., & Jin, J. (2022). Response Surface-Based Finite Element Model Updating of Steel Box-Girder Bridges with Concrete Composite Decks. Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/4298933
Gamarra, R., & Mamani, E. (2022). Determinación del Campo de Desplazamientos y Fuerzas Internas mediante análisis lineal y no lineal del puente arco de acero estructural Enrique P. Mejía, Sicuani, Canchis, Cusco—Perú [Universidad Andina del Cusco]. https://repositorio.uandina.edu.pe/handle/20.500.12557/5005
Huerta, C., & Asmat, C. (2022). Comparación del desempeño sísmico del puente Quilca sin sistemas de protección sísmica y aplicando sistemas de aislamiento y disipación de energía.https://alicia.concytec.gob.pe/vufind/Record/RPUC_8373277fb94ac23eb8fd3d71351754ee
Perea, C.; Aleala, J.; Yepes, V.; Gonzales-Vidosaa, F., & Hospitaler, A. (2017). Design of reinforced concrete bridge frames by heuristic optimization. Advances in Engineering Software, 39(2008), 676-688.
Tacas, K., & Olarte, J. (2018). Vulnerabilidad Sísmica del Puente Primavera [Universidad Nacional de Ingeniería]. https://repositorio.uni.edu.pe/handle/20.500.14076/13758
Weng, F., & Fuxing, L. (2023). Mechanical Analysis of Junction Pier of Fuzhou-Xiamen High-Speed Railway Rigid-Frame Bridge. Advances in Civil Engineering, 2023. https://doi.org/10.1155/2023/7563415
Xiangong, Z.; Lei, C.; Heng, H.; Xiaobo, Z.; Hanhao, Z., & Zhiqing, Z. (2022). Seismic Fragility Analysis of Self-Anchored Suspension Bridge Considering Damping Effect. Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/6980221
Yong, Z.; Xueqin, L., & Yutong, Z. (2022). Investigation on Seismic Response of Long-Span Special Steel Truss Cable-Stayed Bridge. Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/2262289
Zambrano, O., & Mosqueira, M. (2023). Vulnerabilidad Sísmica del Puente Malcas-Condebamba-Cajabamba-Cajamarca [Universidad Nacional de Cajamarca]. https://alicia.concytec.gob.pe/vufind/Record/RUNC_7b0b6ae3b0c039e6b91055406b929d28
Zhou, X.; Cao, L.; Han, H.; Zheng, X.; Zhang, H., & Zhang, Z. (2022). Seismic Fragility Analysis of Self-Anchored Suspension Bridge Considering Damping Effect. Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/6980221
Zite, L.; Genhui, W.; Jiang, F.; Weihong, W.; Yue, J., & Xiaozhong, L. (2022). Seismic Response Analysis of Multidimensional and Multiangle Long-Span Top-Supported CFST Arch Bridge. Advances in Civil Engineering, 2022. https://www.hindawi.com/journals/ace/2022/6807916/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jaime Walter Blas Cano, Rodrigo Antonio Salazar Rojas , Franklin Enrique Vega Gonzáles, Antonio Eduardo Velásquez Andia
This work is licensed under a Creative Commons Attribution 4.0 International License.