Una revisión sobre la diversidad microbiana y su rol en el compostaje aerobio
Resumen
Desde las primeras publicaciones sobre el estudio de los microorganismos en el compostaje, a la actualidad el avance es impresionante, debido a que los métodos microbiológicos y de biología molecular han servido para identificar la estructura de las comunidades microbianas durante el proceso. La interacción de parámetros fisicoquímicas y el tipo de sistema de compostaje, determinan las variaciones en la diversidad y abundancia de las especies microbianas. La actividad metabólica principalmente de bacterias y hongos, permite la degradación de la materia orgánica y contribuyen a la maduración del compost, principal producto del compostaje aerobio. En este proceso, las bacterias son el grupo más abundante, abarcando los Phyla Proteobacterias, Firmicutes, Actinobacterias y Bacteroidetes, seguido por los hongos, principalmente el phylum Ascomycota. El interés en la inoculación del compostaje con microorganismos exógenos, es cada vez mayor, por los beneficios que aportan gracias a su actividad metabólica, principalmente lignocelulolítica y en el mejoramiento de la calidad del compost, disminuyendo el tiempo de compostaje. Se presenta una revisión sobre la diversidad microbiana durante el compostaje y el rol que cumplen los microorganismos endógenos y aquellos inoculadas, con el objetivo de brindar una perspectiva sobre la situación actual y el abordaje de nuevos retos relacionados al potencial empleo de los microorganismos del compostaje.Descargas
Citas
Antunes, L. P.; Martins, L. F.; Pereira, R. V.; Thomas, A. M.; Barbosa, D.; Lemos, L. N. y Setubal, J. C. 2016 . “Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics”. Scientific Reports Vol. 6: 1–13. < https://doi.org/10.1038/srep38915>
Aveiga, E.; Alcívar, R.; Cañarte, F. y Vera, H. 2016. “Uso de biopreparados en el compostaje de residuos orgánicos urbanos”. Revista Espamciencia Vol. 7, No. 2: 135–142.
Awasthi, S. ; Wong, J. ; Li, J.; Wang, Q.; Zhang, Z.; Kumar, S.; y Awasthi, M. 2018. “Evaluation of microbial dynamics during post-consumption food waste composting”. Bioresource Technology Vol. 251:181–188. <https://doi.org/10.1016/j.biortech.2017.12.040 >
Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S. y Thami Alami, I. 2017. “Composting parameters and compost quality: a literature review”. Organic Agriculture Vol. 8, No. 2: 141–158. <https://doi.org/10.1007/s13165-017-0180-z >
Fan, Y.; Van Jaromír, J.; Chew, K.; Lee, T.y Ho, C. 2017. “Efficiency of microbial inoculation for a cleaner composting technology”. <https://doi.org/10.1007/s10098-017-1439-5 >
Galitskaya, P.; Biktasheva, L.; Saveliev, A.; Grigoryeva, T.; Boulygina, E. y Selivanovskaya, S. 2017. “Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing”. PLoS ONE Vol. 12: 1–20. < https://doi.org/https://doi.org/10.1371/journal.pone.0186051 October >
Gou, C., Wang, Y., Zhang, X., Lou, Y., y Gao, Y. 2017. “Inoculation with a psychrotrophic-thermophilic complex microbial agent accelerates onset and promotes maturity of dairy manure-rice straw composting under cold climate conditions”. Bioresource technology Vol. 243: 339-346.
Gu, W.; Lu, Y.; Tan, Z.; Xu, P.; Xie, K.; Li, X. y Sun, L. 2017. “Fungi diversity from different depths and times in chicken manure waste static aerobic composting”. Bioresource Technology Vol. 239: 447–453. <https://doi.org/10.1016/j.biortech.2017.04.047 >
Huang, C.; Lai, C.; Zeng, G.; Huang, D.; Xu, P.; Zhang, C. y Wan, J. 2017. “Manganese-enhanced degradation of lignocellulosic waste by Phanerochaete chrysosporium : evidence of enzyme activity and gene transcription”. Environmental Biotechnology 6541–6549. < https://doi.org/10.1007/s00253-017-8371-9 >
Huang, C.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C. y Zhang, Y. 2017. “Effect of Phanerochaete chrysosporium inoculation on bacterial community and metal stabilization in lead-contaminated agricultural waste composting”. Bioresource Technology Vol. 243: 294–303. < https://doi.org/10.1016/j.biortech.2017.06.124 >
Indumathi, D. 2017. “Microbial Conversion of Vegetable Wastes for Bio fertilizer Production”. IOSR Journal of Biotechnology and Biochemistry Vol. 3, No. 02: 43–47. < https://doi.org/10.9790/264x-03024347 >
Jain, M. S.; Daga, M. y Kalamdhad, A. S. 2018. “Composting physics: A science behind bio-degradation of lignocellulose aquatic waste amended with inoculum and bulking agent”. Process Safety and Environmental Protection Vol. 116: 424–432. < https://doi.org/10.1016/j.psep.2018.03.017 >
Li, C.; Li, H.; Yao, T.; Su, M.; Ran, F.; Han, B. y Gun, S. 2019. “Microbial inoculation influences bacterial community succession and physicochemical characteristics during pig manure composting with corn straw”. Bioresource Technology Vol. 289: 121653. < https://doi.org/10.1016/j.biortech.2019.121653 >
Liu, L.; Wang, S.; Guo, X. ; Zhao, T. y Zhang, B. 2017. “Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting”. Waste Management Vol. 73: 101–112. <https://doi.org/10.1016/j.wasman.2017.12.026 >
Liu, T., Awasthi, MK, Jiao, M., Awasthi, SK, Qin, S., Zhou, Y. y Zhang, Z. 2021. “Cambios en la diversidad de hongos en el compostaje de estiércol de cerdo enmienda de escoria de gasificación de carbón fino”. Tecnología de fuentes biológicas Vol. 325 : 124703.
Medina, M. ; Quintero, R. ; Espinosa, D. ; Alarcón, A. ; Etchevers, J. D. ; Trinidad, A. y Martínez, C. 2018. “Generación de un inoculante acelerador del compostaje”. Revista Argentina de Microbiología Vol. 50, No. 2: 206–210. <https://doi.org/10.1016/j.ram.2017.03.010>
Meng, Q. ; Yang, W. ; Men, M. ; Bello, A. ; Xu, X. y Xu, B. 2019. “Microbial Community Succession and Response to Environmental Variables During Cow Manure and Corn Straw Composting”. Frontiers in Microbiology Vol. 10: 529. <https://doi.org/10.3389/fmicb.2019.00529>
Milanović, V. ; Osimani, A. ; Cardinali, F. ; Taccari, M. ; Garofalo, C., ; Clementi, F. y Aquilanti, L. 2019. “Effect of inoculated azotobacteria and Phanerochaete chrysosporium on the composting of olive pomace : Microbial community dynamics and phenols evolution”. Vol. 1, No. 9: 1–11. <https://doi.org/10.1038/s41598-019-53313-z>
Nakasaki, K. ; Hirai, H. ; Mimoto, H. ; Quyen, T. ; Koyama, M. y Takeda, K. 2019. “Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting”. Science of the Total Environment Vol. 671: 1237–1244. <https://doi.org/10.1016/j.scitotenv.2019.03.341>
Neugebauer, M., y Sołowiej, P. 2017. The use of green waste to overcome the difficulty in small-scale composting of organic household waste. Journal of Cleaner Production Vol. 156: 865-875.
Ren, G. ; Xu, X. ; Qu, J. ; Zhu, L. y Wang, T. 2016. “Evaluation of microbial population dynamics in the co-composting of cow manure and rice straw using high throughput sequencing analysis”. World Journal of Microbiology and Biotechnology Vol 32. No. 6: 101 <https://doi.org/10.1007/s11274-016-2059-7>
Ribeiro, N. ; Souza, T. P., ; Costa, L. ; Castro, C. P. y Dias, E. S. 2017. “Microbial additives in the composting process”. Ciência e Agrotecnologia Vol. 41, No. 2: 159–168. <https://doi.org/10.1590/1413-70542017412038216>
Rivas, M. ; Gonzáles, M. ; Belloso, G. y Silva, R. 2017. “Población de hongos y actinomicetes presentes en el proceso de compostaje con base de bora ( Eichhornia crassipes ), residuos de café y jardinería”. Saber, Universidad de Oriente, Venezuela Vol. 29: 358–366.
Silva, M. ; Lopes, A. ; Cunha-Queda, A. C. y Nunes, O. C. 2016. “Comparison of the bacterial composition of two commercial composts with different physicochemical, Stability and maturity properties”. Waste Management Vol. 50: 20–30. <https://doi.org/10.1016/j.wasman.2016.02.023>
Storey, S. ; Ní, D. ; Doyle, O. ; Clipson, N. y Doyle, E. 2015. “Comparison of bacterial succession in green waste composts amended with inorganic fertiliser and wastewater treatment plant sludge”. Bioresource Technology Vol. 179: 71–77. <https://doi.org/10.1016/j.biortech.2014.11.107>
Tian, X. ; Yang, T. ; He, J. ; Chu, Q. ; Jia, X. y Huang, J. 2017. “Fungal community and cellulose-degrading genes in the composting process of Chinese medicinal herbal residues”. Bioresource Technology Vol. 241: 374–383. <https://doi.org/10.1016/j.biortech.2017.05.116>
Villar, I., Alves, D., Garrido, J., y Mato, S. 2016. “Evolution of microbial dynamics during the maturation phase of the composting of different types of waste”. Waste Management Vol. 54: 83-92.
Voběrková, S. ; Vaverková, M. ; Burešová, A. ; Adamcová, D. ; Vršanská, M. ; Kynický, J. y Adam, V. 2017. “Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste”. Waste Management Vol. 61: 157–164. <https://doi.org/10.1016/j.wasman.2016.12.039 >
Wang, K. ; Yin, X. ; Mao, H. ; Chu, C. y Tian, Y. 2018. “Changes in structure and function of fungal community in cow manure composting”. Bioresource Technology Vol. 255: 123–130. <https://doi.org/10.1016/j.biortech.2018.01.064>
Wang; Liu, Z. ; Xia, J. y Chen, Y. 2019. “Effect of microbial inoculation on physicochemical properties and bacterial community structure of citrus peel composting”. Bioresource Technology Vol. 291: 121-843. <https://doi.org/10.1016/j.biortech.2019.121843>
Wang, X. ; Cui, H. ; Shi, J. ; Zhao, X. ; Zhao, Y. y Wei, Z. 2015. “Relationship between bacterial diversity and environmental parameters during composting of different raw materials”. Bioresource Technology Vol. 198:395–402. <https://doi.org/10.1016/j.biortech.2015.09.041>
Wang; Xuanqing; Kong, Z. ; Wang, Y.; Wang, M. y Liu, D. 2020. “Insights into the functionality of fungal community during the large scale aerobic co-composting process of swine manure and rice straw”. Journal of Environmental Management, Vol. 270: 110958. <https://doi.org/10.1016/j.jenvman.2020.110958>
Wei, H. ; Wang, L. ; Hassan, M. y Xie, B. 2018. “Succession of the functional microbial communities and the metabolic functions in maize straw composting process”. Bioresource Technology Vol 256: 333-341. <https://doi.org/10.1016/j.biortech.2018.02.050>
Xi, Beidou; He, X.; Dang, Q. ; Yang, T. ; Li, M. ; Wang, X. y Tang, J. 2015. “Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting”. Bioresource Technology Vol. 196: 399–405. <https://doi.org/10.1016/j.biortech.2015.07.069>
Xu, J., Jiang, Z., Li, M., y Li, Q. 2019. “A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting”. Journal of environmental management Vol. 243: 240-249.
Yang, L. ; Jie, G. ; She-qi, Z. ; Long-xiang, S. ; Wei, S. ; Xun, Q. y Man-li, D. 2018. “Effects of Adding Compound Microbial Inoculum on Microbial Community Diversity and Enzymatic Activity During Co-Composting” Environmental Engineering Science Vol. 35, No. 4: 270–278. <https://doi.org/10.1089/ees.2016.0423>
Zhang, L. ; Jia, Y. ; Zhang, X. ; Feng, X. ; Wu, J. ; Wang, L.y Chen, G. 2016. “Wheat straw: An inefficient substrate for rapid natural lignocellulosic composting”. Bioresource Technology Vol. 209: 402–406. <https://doi.org/10.1016/j.biortech.2016.03.004 >
Zhao, K. ; Xu, R. ; Zhang, Y. ; Tang, H. ; Zhou, C. ; Cao, A. y Guo, H. 2017. “Development of a novel compound microbial agent for degradation of kitchen waste”. Brazilian Journal of Microbiology Vol. 48: 442–450. <https://doi.org/10.1016/j.bjm.2016.12.011>
Zhao, Y. ; Zhang, Z. ; Wei, Y. ; Wang, H. ; Lu, Q. y Wei, Z. 2017. “Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting”. Waste Management Vol. 68: 64- 73. <https://doi.org/10.1016/j.wasman.2017.06.022 >
Zhong, X. ; Ma, S. ; Wang, S. ; Wang, T. ; Sun, Z. ; Tang, Y. y Kida, K. 2017. “A comparative study of composting the solid fraction of dairy manure with or without bulking material: performance and microbial community dynamics”. Bioresource Technology Vol. 247: 443-452. <https://doi.org/10.1016/j.biortech.2017.09.116>