Referencias Bibliográficas
Adauto, M. y Bram,W. 2015. «Identificación de Humedales Alto Andinos Integrando Imágenes
Landsat y Aster Gdem Con Árbol de Decisión Sobre La Cabecera de Las Cuencas Pisco y
Pampas En Huancavelica - Perú». XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR,
1, 29 - 36.
Berhane, Tedros y et all. 2018. «Decision-Tree, Rule-Based, and Random Forest Classification
of High-Resolution Multispectral Imagery forWetland Mapping and Inventory». Remote
Sensing 10¹4º, 2 - 26.
Borrás, J.; Delegido, J.; Pezzola, A.; Pereira, M.; Morassi, G. y Camps-Valls, G. 2017. «Clasificación de Usos
Del Suelo a Partir de Imágenes Sentinel-2». Revista de Teledeteccion ¹48º,
55 - 66.
Colditz, René. 2015.«AnEvaluation of DifferentTraining Sample Allocation Schemes for Discrete
and Continuous Land Cover Classification Using Decision Tree-Based Algorithms». Remote Sensing 7¹8º,
9655 - 9681.
Huang, C.; Davis, L. y Townshend, J. 2002. «An Assessment of Support VectorMachines for
Land Cover Classification». International Journal of Remote Sensing 23¹4º, 725 - 49.
Keshtkar, H. y Winfried, V. 2016. «Potential Impacts of Climate and Landscape Fragmentation
Changes on Plant Distributions: Coupling Multi-Temporal Satellite Imagery with GISBased
Cellular Automata Model». Ecological Informatics 32, 145 - 55.
Khatami, R.; Giorgos, M., y Stehman, S. 2016. «AMeta-Analysis of Remote Sensing Research
on Supervised Pixel-Based Land-Cover Image Classification Processes: General Guidelines
for Practitioners and Future Research» Remote Sensing of Environment 10¹154º, 89-100.
Landis, R. y Koch, G. 1977. «An Application of Hierarchical Kappa-Type Statistics in the Assessment
ofMajority Agreement among Multiple Observers». Biometrics 33¹2º, 363 - 74.
MINAM. 2014. Protocolo: Análisis de Las Dinamicas de Cambio de Cobertura de La Tierra
En La Comunidad Andina. Documento público. Ministerio de Ambiente.
MINAM. 2015.Mapa Nacional de CoberturaVegetal. Ministerio del Ambiente Direccion General
de Ordenamiento Territorial Ambiental.
Minnaert, M. 1941. «The Reciprocity Principle in Lunar Photometry». The Astrophysical
Journal 93.
Mora, André y et all. 2017. «LandCover Classification from Multispectral Data UsingComputational
Intelligence Tools: A Comparative Study». Information (Switzerland) 8¹4º, 2 - 15
Ramana, K. y Rajesh, P. 2019. «Land Use Land Cover Classification Using a Novel Decision
Tree Algorithm and Satellite Data Sets». Advances in Intelligent Systems and Computing
862, 381 - 389.
Ramos, V. y Ramirez, J. 2014. Análisis Multitemporal de La Cobertura Vegetal En La Microcuenca
Quillcayhuanca, Periodo 1962 - 2013, Huaraz - Ancash. Tesis de pregrado. Universidad
Nacional Santiago Antúnez deMayolo. Huaraz, Perú.
Shih, H.; Douglas, A. y Hsin, T. 2019. «Guidance on and Comparison of Machine Learning
Classifiers for Landsat-Based Land Cover and Land Use Mapping» International Journal of
Remote Sensing 40¹ 4º, 1248 - 74.
Shukla, Gaurav y et al. 2018. «Using Multi-Source Data and Decision Tree Classification in
Mapping Vegetation Diversity». Spatial Information Research. 26¹ 5º, 573 - 85.
USGS. 2019. Landsat 8 ( L8) Data Users Handbook. USA. Vaughn Ihlen. 5th ed. Vol. 5.
Yang, Chao y et al. 2017. «Improving Land Use/Land Cover Classification by Integrating Pixel
Unmixing and Decision TreeMethods». Remote Sensing 9¹ 12º, 2 - 16.